Tag: technology

Decrypting the Encryption Battle

President Barack Obama became the first president to address the annual technology and music festival, South by South West (SXSW), in Austin, Texas. Without mentioning the FBI’s battle with Apple over access to an encrypted i-Phone, his attempt at “healing the rift” between the tech industry and the government fell more than flat and he …

Continue reading

The High Cost For Bad Internet Connection In The US

Cross posted from The Stars Hollow Gazette

Recently the Federal Communications Commission announced that it wanted to create a free super Wi-Fi network across the country, virtually eliminating a monthly internet bill.  Naturally, the telecommunication giants and the lawmakers in Congress who protect them are opposed.  In Europe, internet users enjoy inexpensive, high speed access to a broadband, phone, and cable TV package for as little as $40 a month.  The phone service has unlimited local calling and a lot of free international calls.

Bloomberg View contributor and  visiting professor at the Harvard Kennedy School of Government and Harvard Law School, Susan Crawford notes that Americans pay a high price for slow and bad internet connections at a time when “the internet has taken the place of the telephone as the world’s basic, general-purpose, two-way communication medium“.  In the article, she describes how a city in Louisiana brought cheaper, high speed internet to its community despite opposition from the telephone and local cable companies:

Terry Huval is a large, friendly man with a lilting Southern accent who plays Cajun fiddle tunes in his spare time. He is also the director of utilities in Lafayette, Louisiana. “Our job is making sure we listen to our citizens,” he says.

In 2004, the Lafayette utilities system decided to provide a fiber-to-the-home service. The new network, called LUS Fiber, would give everyone in Lafayette a very fast Internet connection, enabling them to lower their electricity costs by monitoring and adjusting their usage.

Push-back from the local telephone company, BellSouth Corp., and the local cable company, Cox Communications Inc., was immediate. They tried to get laws passed to stop the network, sued the city, even forced the town to hold a referendum on the project — in which the people voted 62 percent in favor. Finally, in February 2007, after five civil lawsuits, the Louisiana Supreme Court voted, 7-0, to allow the network.

From 2007 to mid-2011, people living in Lafayette saved $5.7 million on telecommunications services.

Prof. Crawford joined Bill Moyers on Moyers & Company to discuss why U.S. internet access is slow, costly and unfair

Susan Crawford, former special assistant to President Obama for science, technology and innovation, and author of Captive Audience: The Telecom Industry and Monopoly Power in the New Gilded Age, joins Bill to discuss how our government has allowed a few powerful media conglomerates to put profit ahead of the public interest – rigging the rules, raising prices, and stifling competition. As a result, Crawford says, all of us are at the mercy of the biggest business monopoly since Standard Oil in the first Gilded Age a hundred years ago.

“The rich are getting gouged, the poor are very often left out, and this means that we’re creating, yet again, two Americas, and deepening inequality through this communications inequality,” Crawford tells Bill.

Free Public Wi-Fi Coming to the USA

Cross posted from The Stars Hollow Gazette

Color me shocked. If this comes to fruition, the US would catch up with the rest of the world.

The federal government wants to create super WiFi networks across the nation, so powerful and broad in reach that consumers could use them to make calls or surf the Internet without paying a cellphone bill every month. […]

   The airwaves that FCC officials want to hand over to the public would be much more powerful than existing WiFi networks that have become common in households. They could penetrate thick concrete walls and travel over hills and around trees. If all goes as planned, free access to the Web would be available in just about every metropolitan area and in many rural areas.

   The new WiFi networks would also have much farther reach, allowing for a driverless car to communicate with another vehicle a mile away or a patient’s heart monitor to connect to a hospital on the other side of town.

Over at Maddow Blog, Steve Brenen spoke with an FCC spokesperson who explained:

“The FCC’s incentive auction proposal, launched in September of last year, would unleash substantial spectrum for licensed uses like 4G LTE. It would also free up unlicensed spectrum for uses including, but not limited to, next generation Wi-Fi. As the demand for mobile broadband continues to grow rapidly, we need to free up significant amounts of spectrum for commercial use, and both licensed and unlicensed spectrum must be part of the solution.”

This is several years off and faces opposition from the telecom industry and lawmakers in the House and Senate who represent them and not us.

h/t to Susie Madrak at Crooks and Liars for this 2010 interview with FCC Chairman Julius Genachowski who  answered questions submitted and voted on by people on Citizentube.

Pique the Geek 20130106: Magnesium — Common and Essential

Magnesium, with a Z = 12, is an extremely common element in the crust of the earth, but it is never found in nature in the elemental state.  It is the second member, after beryllium, in the alkaline earth series of elements.  It is above calcium in that same group, and has significant biological roles.

As is the general trend for elements on the left hand of periodic table, magnesium is less reactive than calcium, just as beryllium is less reactive than magnesium.  This is due to the fact that elements in the first and second columns have their electrons more tightly bound the higher in the column they appear because of less shielding from other electron shells.

Pique the Geek 20121202: Emulsification

Before we begin tonight, please join me in paying my respects to my mum, who would have been 91 years old today.  The season beginning with Thanksgiving and lasting through New Year’s Day was her favorite of the year, and she showed lots of love to everyone during this time.  But she showed lots of love all year ’round.

The definition of an emulsion is two dissimilar liquids that are dispersed into a more of less long lasting mixture that has properties different than either of the two liquids.  I say dissimilar because in most cases one of the liquids is hydrophopic (literally, “water fearing”, often an oil or hydrocarbon) and the other one hydrophilic (literally, “water loving”, often water itself).

The old adage that oil and water do not mix is only partially true.  It is possible to make them mix, and it is often done intentionally.  Sometimes it happens upon accident, and we organic chemists know that when the synthetic product that we seek to isolate forms an emulsion with the solvent and/or other materials in the separatory funnel that is easy to become piqued by that.

Pique the Geek 20121118: Scotch Whisky

Scotch whisky is quite different than most other distilled grain spirits.  First of all, it has its own spelling.  Except for Scotch, the spelling is “whiskey”.  In the case of Scotch, it is “whisky”.  I do not know if that is a Gaelic thing, but it is true.  Likewise, the plural of “whisky” is “whiskies”, whilst the plural of “whiskey” is “whiskeys”.  Actually, these distinctions are at best approximate, as some American brands of things that are not Scotch call themselves “whisky”.  But Scotch is almost always spelt “whisky”.

Actually, I am not sure if “Scotch” should even be the name for it.  Some of them call themselves “Scots’ Whisky”.  That might be a better way of saying it.

Now for the Geeky stuff.  Follow with me for several hundreds of years?

Pique the Geek 20121111: Drying Oils

I was painting a wooden basket yesterday with boilt linseed oil and thus came the inspiration for tonight’s topic.  Drying oils are very important in the coatings industry, not as much as in the past but still important.

Back in the day before high quality water based paints had been developed, oil based paints were just about the only good choice except for some specialized applications.  Before we go into detail, we should define some key terms regarding to paint.

The vehicle is the part of the paint that forms a tough, adherent film.  In oil based paints the vehicle is generally linseed oil.  In latex paints the vehicle is some type of synthetic resin.

The second component (not always in paint, but usually) is the solvent, also called the diluent.  In oil paint the solvent is now usually petroleum distillates, but before oil was discovered the solvent was almost always turpentine.  In latex paints the solvent is water.

The pigment is composed of inorganic powders, usually white or colorless.  The pigment can add to the toughness of the film.  For commercial house paints the pigment does not provide color (except for white) and usually organic dyes are added to the pigment for colors, although some other materials are also used.  For art paints, many times the pigment is also the color in many cases.  Pigments are similar for oil and water based paints.

There are also additives in small quantities in most paints to modify drying rate, viscosity, surface tension, and other properties.  Water based paint often contains ethylene glycol as an antifreeze.

Pique the Geek 20121021: Reflections on the Genus Carya

Today was a splendid day in the Bluegrass.  The temperature was in the low 70s, only a very light breeze, and not a cloud in the sky.  The Woman had gone to birthday party for a relative, but when she got home I took over the pumpkin pie that we had baked together last night and we each had a piece.  The crust, described here, was perfect.

I left a generous portion of the pie, and she gave me a big hunk of the pumpkin roll that we also made last night.  I knew that she was going to be busy later in the day, so I went nutting.  My target today was hickory nuts, getting ready for holiday baking.  There is a tree that is a reliable cropper just about half a mile from my house, in the yard of some very nice people who always tell me to get as many nuts as I care to pick up, and so I did.  Within an hour I had enough clean nuts for all of the holiday cooking, and then some.

Pique the Geek 20101007: More about Sodium

Last time we started our discussion about sodium, and tonight we shall continue it.  We have pretty much covered the quantum mechanical part and the properties and uses of elemental sodium, so tonight we shall focus on some of the compounds of that element.

Sodium compounds are extremely common and widespread, but not universally distributed.  This is important for reasons to be seen later.

The most common sodium compound is common salt, or sodium chloride, NaCl.  Everyone has personal experience with salt, both as a nutrient and as a melting aid for icy surfaces.

Pique the Geek 20120930: Sodium — You Can Not Get Away from It

Sodium, element number 11, is one of the most common elements in the crust of the earth.  Except for school laboratory demonstrations, few people have ever seen elemental (metallic) sodium because it is so reactive and actually has very limited consumer uses (that would be about zero consumer uses).

We have hinted at the concept of periodicity previously, like last week when we saw how similar the chemical behavior of helium and neon are.  The similarities betwixt hydrogen and lithium are much less marked than those betwixt lithium and sodium, mostly due to the extreme low mass of hydrogen, making quantum effects more pronounced.  Thus, sodium is the second alkali metal after lithium even though hydrogen is in the same column in the periodic table.

In other words, the two first row elements, hydrogen and helium, are aberrant because of their low masses AND because they have only the K electron shell in the ground state AND as a corollary, only the 1s orbital that is filled with only two electrons.  Starting with the second row, the L shell begins to be filled and it contains, in addition to the 1s orbital, a 2s and three 2p orbitals.  Row three elements, sodium being the first of which, also contain in addition to those orbitals, a 3s and three 3p orbitals, making them more like the second row than the second is to the first row.

Pique the Geek 20120923: Neon, as Inert as Elements Come

Last time we talked about fluorine, the very most reactive chemical element.  Now we add a single proton to the fluorine nucleus and come to Element 10, the LEAST reactive chemical element.  What a difference a charge can make!

Actually, neon is quite common in the cosmos but quite rare on earth.  It is fifth, after the elements that we have already discussed, because it is mostly a light even/even nucleus.  But that is not what makes it outstanding.

There are three stable isotopes of neon, 20Ne, at almost 91% natural abundance on earth, 21Ne, at about a quarter on one per cent, and 22Ne, the remainder.  This gets important later.

Pique the Geek 20120916: Fluorine, Something You Have Never Seen

Element 9, fluorine, is the first of the halogens, from the Greek halos, “salt”, and gonos, “to bring forth”.  All of the members of this family tend to form salts with metals, but fluorine is unique amongst the halogens in that it forms compounds with EVERY element ever tried except for helium and neon.

Fluorine is by far the most reactive element, having everything just right for extreme chemical behavior.  It is a small atom that forms a small ion.  Its electrons are tightly bound in its ionic form, but oddly molecular fluorine has a remarkably weak bond for a halogen, only iodine having a weaker one.

The element has been known in the form of naturally occurring salts since the Middle Ages, when these minerals were used as fluxes in metal smelting.  The purpose of a flux is to make the ore and reducing agent mixture easier to melt, thus speeding the reaction since liquid state reactions occur much faster than solid state ones.  A secondary use of a flux is to protect the newly won metal from atmospheric oxygen by forming a protective layer that floats on the metal.

Load more